当

青年兴则国家兴,青年强则国家 强。青年的价值取向决定了未来整个 社会的价值取向和未来向度。全媒体 时代,全媒体在促进当代大学生劳动价 值观积极养成的同时,也对当代大学生 的劳动价值观带来一定程度影响和冲 击。如全媒体带来的泛娱乐化思潮、快 餐式文化消费等在一定程度上影响着 青年劳动价值观的正确塑型。只有驾 驭和把握好全媒体的两面性,才能最大 限度用好全媒体,汇聚新时代正能量, 赋能新时代青年的劳动价值观培育。

充分发挥主流媒体舆论 引导作用,营造全社会热爱 劳动、尊重劳动的舆论氛围

全媒体时代,主流媒体的公信力和 影响力对当代青年价值观形成起着关 键性的引导作用。因此,我们要充分发 挥主流媒体的舆论和价值主导作用,为 当代青年劳动价值观形成营造良好的 舆论氛围和社会环境。一是在全社会 倡导"劳动光荣、创造伟大"的价值追 求,激励广大青年用劳动创造更美好的 生活。如近年来人民网等主流媒体报 道的"无奋斗、不青春""越奋斗、越青 春"等青春主题以及各类校园开学或毕 业典礼上振奋人心的"越奋斗、越幸运" "越奋斗、越幸福"等奋斗致辞就很能引 起当代青年的共鸣,激励着当代青年要 用奋斗换青春不悔。二是发挥榜样力 量的舆论引导作用,大力弘扬劳动美、 创造美、贡献美,用劳动榜样的事迹和 精神激励青年为自己、为国家而努力奋 斗。主流媒体可借助"互联网+"媒体平 台,通过当代青年喜闻乐见的方式,将 新时代劳模精神和工匠精神融合到当 代青年的学习工作中去,营造劳动光荣 的文化氛围。如在疫情期间,由中央广 播电视总台文艺节目中心和央视频5G 新媒体平台联合打造的创意融媒体节 目《奋斗吧!青春》"五·四"特别节目通 过视频连线、专题短片的方式展现出当 代青年人努力奋斗的精神面貌,用奋斗 奔跑的姿态,点亮了最美的青春。三是 要挖掘中华优秀劳动文化,讲好新时代 "中国劳动故事"。主流媒体要充分挖 掘中华民族优秀劳动文化和精神,向当 代青年传播中华民族劳动美德和智慧, 激发当代青年树立文化自信,传承中华 优秀劳动文化。如近年来央视热播的 《厉害了,我的国》《舌尖上的中国》等系 列片,从国家层面到普通百姓,把中华 民族的自强不息、勤劳勇敢和劳动智慧 生动大气地展现出来,既贴近生活、又 振奋人心,给当代青年以满满的正能

进一步加强监管,增强 媒体伦理责任,提升信息传 播的精神内涵,涵养青年劳

全媒体时代,话语权之争关乎国家发展方向,关乎 民族精神与价值引领。文化监管者、文化投资者和文 化生产者都应当掌握新媒体话语权,顺应技术潮流,提 升文化传播的精神内涵,以涵养当代青年的劳动情 怀,增强青年对主流价值观的认同。一方面,文化监管 部门要进一步加强对网络媒体平台的管理和准入机制 的监督,净化网络媒体空间。网络监管部门应该从源 头杜绝偏离主流劳动价值观的内容和信息进入网络媒 体平台。另一方面,作为从事文化传播的文化投资者 和媒体经营者,要增强媒体伦理责任,增强文化传播的 精神内涵,做到经济效益和社会效益相统一。媒体经 营者和文化传播者应当准确把握青年的文化需求,把 主流价值观融入文化生产中,以积极向上的正能量的 媒体文化来充实青年的精神世界,提升青年文化品位, 涵养当代青年劳动情怀。如近年来央视热播的《中国 诗词大会》《如果国宝会说话》,河南卫视的《汉字英雄》, 腾讯视频推出的大型明星读信节目《见字如面》等节目 就成功吸引着当代青年去品味经典,感受中华民族源 远流长的传统文化背后的中国精神和中国价值。

健全协同共育机制,提升青年媒体 素养,增强青年的劳动自觉

全媒体时代青年劳动价值观培育并不能仅仅依靠 学校教育的"单向"奔赴,而是需要学校、家庭、社会教育 的"三向"融合共促,才能不断提升当代青年媒体素养, 增强他们的劳动自觉。在学校层面,要把劳动教育纳 人各层次学校的课程建设和课程改革中,充分运用新 兴媒体优势在各学科中渗透和传播中华民族优秀劳动 文化,积极运用各类媒介,将传统的劳动教育课堂变得 更加多元化、多样化,让青年学生在寓教于乐的环境氛 围中感受劳动实践的快乐。同时,学校还要加强青年 的媒体素养教育,通过校园平台、校园广播、微信公众号 等形式,传播正确的劳动价值观与娱乐消遣观,积极引 导当代青年找到现实社会与虚拟世界之间的平衡点, 摆脱"媒介依赖"。在家庭层面,家长要以身作则,以良 好的家风,勤劳的作风浸润青年的劳动情怀,让当代青 年认识和感悟到"勤劳是立身之本,也是立国之基"。社 会层面,要进一步健全当代青年劳动就业和创业的保 障机制,社会各界要充分尊重和发挥当代青年的创造 力和能动性,鼓励他们积极参与到全媒体文化转型和 发展建设中,创新媒体应用方式,拓展新媒体领域,运用 新媒体传播中华文化、讲述中国故事、展示中国力量,让 青年在全媒体情境中感受到劳动的艰辛和收获的喜 悦,不断增强青年的劳动自觉。

[本文系基金项目:广西一流学科(培育)建设项目 (桂教科研[2018]12号);广西马克思主义理论研究和建 设工程百色学院基地项目。]

(作者单位:百色学院马克思主义学院,广西 百色

533000)

竣工阶段财务决算内部控制制度建设探讨

竣工财务决算是检验工程投资成效与资金使用效 率的关键关口,但现实中仍存数据失真、审核走形、内控 乏力等问题。本文结合典型审计案例,剖析其成因与风 险,强调内部控制在保障数据真实、防范经营风险、提升 决算效率中的核心作用,并提出权责明确、过程管控、数 字赋能与监督问责等可落地举措,为提升竣工阶段财务 决算质量和效率提供实践路径。

关键词:竣工财务决算:内部控制:风险防控:数字

竣工财务决算是工程投资的"收官账",既检验资金 使用成效,也是衡量企业治理水平的重要标尺。但现实 中,不少项目存在周期过长、资料缺失、数据失真和内控 乏力等问题,影响资产人账与审计结果,甚至造成经济 损失。随着监管趋严和数字化管理加快,强化全过程内 部控制、提质提速竣工决算,已成为工程建设领域突围 与提升的关键课题。

竣工财务决算的战略意义与实施难 点分析

一、竣工财务决算——工程建设的"经济体检"

竣工财务决算是对工程建设全过程投资的系统梳 理与总结,全面反映资金投向、使用效率和经济成果,堪 称项目的"经济体检"。它既能揭示预算控制与成本管 理成效,又为后续投资决策提供参考。宏观上,财政、业 主和审计部门将其视为评判工程成败的重要依据;企业 内部,则关系到固定资产人账、税务处理和成本核算的 准确性。高质量的竣工决算,才能真实呈现经济成果, 并为未来决策提供可靠支撑。

二、跨部门协作与周期管理的双重挑战

竣工财务决算是一项跨部门、跨专业的系统性工 作,需要财务、工程、合同、审计等多方协作。核算内容 涵盖资金流向、工程量对接、合同执行、变更签证等,既 有定量数据,也包含定性判断;而不同部门在逻辑、口 径、时间上的差异,易引发数据不一致甚至多轮修订,增 加协调成本。与此同时,项目周期动辄数年甚至更长, 人员变动、管理调整、政策变化等,都可能导致资料缺失 或记录断档;若过程监控不严,还可能出现合同、工程量 与实际结果脱节,只能依赖经验推算,进而埋下决算失 真、违规及审计法律风险。

竣工财务决算中的主要问题与风险 成因探析

一、数据失真削弱决算公信力

竣工决算的核心在于数据真实完整,但现实中虚 报、多报、漏报工程量现象仍时有发生,既损害财务报表 公信力,也可能引发审计质疑与经济追责。审计署 2019年第8号公告显示,贵州省某高速公路项目通过 重复计量工程量、虚列材料费等方式,虚增投资约1.26 亿元,最终被要求调整决算、追回资金并追责。此类问 题多源于工程量审核不严、缺乏市场比价机制,直接威 胁财政资金安全与决算真实性。

二、审核流于形式埋下隐患

决算审核应核对账面数据并核实现场实际,但在部 分项目中,审核流于纸面资料,缺乏现场验证与原始凭 证比对。浙江省审计厅2018年审计杭州市某文化中心 项目时发现,该工程在尚未完工的情况下,就将相关费 用计入竣工总额,原因正是审核部门未进行现场查验。 这不仅造成账实不符,还可能掩盖质量问题,让"空账" 入账,带来长期管理风险。

三、内控缺失与信息孤岛

不少项目因内部控制不健全或执行不力,导致部门 间信息未能及时共享,数据衔接出现断点。广东省审计 厅2017年审计某保障性住房项目时发现,因工程管理 与财务部门沟通不畅,设计变更和合同追加投资未同步 录入财务台账,致使竣工决算与实际支出相差900多万 元。此类偏差不仅增加返工成本,延误审批,还可能带 来法律风险。"信息孤岛"的根源在于内控薄弱,亟须通 过制度规范和信息化建设加以解决。

内部控制在竣工财务决算中的功能 与价值

一、数据真实与完整的"防火墙"

竣工决算须以数据真实完整为基础,而健全内控可 通过多重复核和流程监控,确保每笔支出可追溯、有凭 据[5]。审计署2020年第9号公告披露,某水利工程因 现场签证和合同变更管理不严,出现重复计量和漏计支 出。整改后,该单位建立财务、工程、审计三方联合复核 制度,要求数据与原始凭证、实物清册逐一对应,有效杜 绝虚报漏报。

二、防范经营与法律风险

内控的另一作用是将监管嵌入合同履行、资金拨付 和物资采购全过程,防止违规与舞弊。云南省审计厅 2019年审计发现,某市政道路改造工程施工单位未经 审批更换材料并虚报价格,致财政多支付400余万元。 缺乏动态监控使问题拖至竣工审计才暴露。事实证明, 唯有将内控延伸至项目全周期,方能将风险遏制在萌芽

三、提效与管理水平的"双提升"

完善内控不仅防风险,也能提效率。明确权限分工 和标准化流程,可减少资料反复、缩短协同时间。国家 电网自2018年起在重点基建项目推广"项目管理+财 务一体化"系统,实时共享工程进度、合同、成本数据,配 合制度化节点审批,使部分项目决算周期缩短三分之 一,并促进跨部门标准化、可追溯协作,为后续投资与资 金调度提供可复制经验。

竣工财务决算内部控制体系的优化 策略与实施路径

一、明确权责与流程闭环

制度建设首要是明确职责与审批流程,将财务、工 程、合同、审计等环节纳入统一管理。可借鉴项目制,在 竣工阶段设立专项决算小组,由项目经理牵头,核心成员

包括财务总监、工程总工、合同管理员和审计负责人,并 明确分工:工程部门提供核实工程量清册,合同部门确认 合同及变更履历,财务部门归集成本并核对科目,审计部 门独立复核。通过绘制含时间节点和责任签字的可视化 流程图,将制度要求转化为可执行指令,实现权责清晰、 过程可控、责任可追溯。

二、强化过程控制与资料管理

竣工决算的效率与质量取决于施工期资料的完整与 合规。制度应要求建立动态台账管理,做到"当日事、当 日录、当月结"。合同变更须在5个工作日内录入并审 批,现场工程量复核需与财务同步备案;会议纪要、签证 单、付款凭证及影像资料应绑定入库,并按合同号或工程 分区分类存放。合同变更备案、工程量实测、最终对账等 关键节点可实行"否决制",未通过审核不得进入下一环 节,从源头避免竣工阶段突击收集资料的低效与风险。

三、数字化赋能与人员培养

制度落地需技术支撑,可引入ERP、BIM、工程项目 管理一体化平台,实现合同、进度、资金、成本等数据关联 与"一处录入、全系统共享"。BIM 可核查竣工工程量与 设计偏差,ERP可追踪费用与合同、发票及支付记录对应 关系,并推行数据全程留痕。人员方面,应培养"财务+工 程"复合型人才,让财务参与现场核查,让工程熟悉成本 与科目管理,形成跨界协作;关键岗位实行轮岗和继任计 划,确保制度连续性。

四、监督追责与持续改进

内控的有效性依赖监督与反馈。建议内部审计全程 参与竣工决算,从施工后期介入,对合同履行、变更管理、 资金拨付等进行动态抽查,避免流于事后审计。发现重 大问题应在48小时内上报,并于一周内提出整改方案。 将内控执行情况纳入绩效考核,对执行力强的团队奖励, 对屡犯问题的部门或个人处罚。通过项目复盘会归纳不 足、更新制度,并沉淀为企业标准化指引,形成持续改进

竣工财务决算不是一张简单的财务报表,而是贯穿 项目全生命周期的管理成果集中反映。唯有以真实完整 的数据为基础,以科学严密的内控为保障,融合制度、技 术与人才优势,才能确保每一笔资金去向清晰、每一项成 果经得起检验,为企业稳健经营、财政资金安全和工程建 设高质量发展提供坚实支撑。

参考文献:

[1]吴希哲.工程竣工财务决算编制及审计工作实务 分析[J].上海企业,2025,(06):228-230.

[2]张博健.基建工程自动竣工决算体系在电网行业 的应用研究[D].沈阳大学,2023.

[3]戴红霞.基本建设竣工财务决算滞后问题分析[J] 财会学习,2020,(16):76-77. [4]陈甫懿.基本建设竣工财务决算存在的问题和不

足[J].中国集体经济,2023,(08):125-128.

[5]杨凡.风险导向下行政事业单位内部审计对内控 有效性的影响研究[J].塑料包装,2025,35(04):442-445.

(作者单位:江苏东衡会计师事务所有限公司)

煤矿低浓度瓦斯利用关键技术与发展挑战研究

煤矿低浓度瓦斯兼具"安全隐患"与"清洁能源"双重 属性,其高效利用是实现煤矿安全生产、能源结构转型与 "双碳"目标的重要途径。本文系统分析低浓度瓦斯的理 化与排放特性及利用制约因素,重点阐述内燃机发电与 无焰氧化蓄热两大核心利用技术的原理、应用现状,深入 剖析当前面临的预处理效率低、浓度适配性差、安全风险 高等技术挑战,最后提出未来发展方向。

关键词:煤矿低浓度瓦斯;内燃机发电;无焰氧化蓄 热;技术挑战;清洁能源利用

煤炭作为我国主体能源,占一次能源消费比重长期维 持在50%以上,支撑着国民经济的稳定运行。但煤炭开采 过程中伴生的瓦斯,尤其是低浓度瓦斯,已成为制约煤矿 安全生产与绿色发展的关键问题。据《中国煤层气产业发 展报告(2024)》统计,我国煤矿每年抽采瓦斯总量超200 亿立方米,其中低浓度瓦斯占比达60%以上,多数煤矿因 技术与经济限制,将低浓度瓦斯直接排空,不仅造成能源 浪费,更带来严重的安全与环境隐患。

从安全角度看,低浓度瓦斯的甲烷体积分数多处于 5%-16%的爆炸极限范围内,在储存、输送与利用过程中, 遇静电、高温等火源极易引发爆炸事故。从环境角度看, 甲烷的全球变暖潜能值(GWP)是二氧化碳的28倍,每年 我国煤矿排空的低浓度瓦斯等效二氧化碳排放量超1.2亿 吨,占工业领域甲烷排放总量的40%,成为"双碳"目标实 现的重要阻碍。从能源价值看,低浓度瓦斯燃烧热值达 8—25MJ/m³, 若能全部利用, 年可替代标准煤超3000万 吨,相当于新增一座大型煤矿的年产量,对缓解能源供需 矛盾具有重要意义。

我国低浓度瓦斯利用技术研发始于21世纪初,目前已 形成以"能源化利用为主、化工原料化为辅"的格局。能源 化利用中,内燃机发电是最成熟的技术路径,国产化燃气 内燃机适配浓度范围已从早期的15%—30%拓展至8%— 30%。在输送与预处理技术方面,我国已突破细水雾输 送、惰性气体稀释等安全输送技术,解决了低浓度瓦斯长 距离管道输送的爆炸风险问题;变压吸附(PSA)提浓技术 的甲烷回收率提升至70%—85%,膜分离提浓国产膜材料 甲烷/氮气分离系数达20一30,逐步替代进口产品。

低浓度瓦斯特性与利用制约因素

低浓度瓦斯组分复杂,除甲烷外,还含有氧气、氮气、 二氧化碳,以及粉尘、硫化氢、水蒸气等杂质。其中,氧气的 存在是一把"双刃剑":一方面为燃烧提供助燃条件,减少额 外供氧成本;另一方面使瓦斯处于爆炸极限范围内,大幅 提升安全风险。从理化参数看,低浓度瓦斯属于一级易燃 气体,对储存与输送设备的防爆等级要求极高;其燃烧热 值随甲烷浓度波动显著,导致单位能量产出的设备投资与 运行成本偏高。

低浓度瓦斯排放具有"动态波动性"与"区域集中性"

特点。从排放源看,采空区瓦斯浓度波动最大,受煤层赋 运行,发电效率下降。且煤矿低浓度瓦斯中含有的硫化 存条件与开采进度影响,昼夜变化幅度可达10%—15%; 掘进工作面瓦斯浓度相对稳定,但流量随掘进速度变化; 回采工作面瓦斯浓度约8%—15%,流量与采煤机工作强 度正相关。从区域分布看,我国低浓度瓦斯排放集中在晋 陕蒙新等主产煤区,四省区排放量占全国总量的70%以 上,具备规模化利用的资源基础。

从安全性上来看,低浓度瓦斯的爆炸风险存在于"抽 采一输送一利用"全链条。抽采环节,瓦斯从煤层释放 后,若抽采负压控制不当,易混入空气导致浓度降至爆炸 极限;在输送环节,若长距离管道因腐蚀、第三方破坏等 导致泄漏,泄漏瓦斯与空气混合形成可燃云团,遇火源引 发爆炸。从技术上来看,技术瓶颈导致低浓度瓦斯综合 利用效率不足50%,远低于高浓度瓦斯。预处理技术是 低浓度瓦斯利用的"第一道门槛",预处理成本占比高。 同时存在转化利用技术适配性不足的问题,内燃机发电 在甲烷浓度 < 8% 时无法稳定运行, 无焰氧化蓄热技术在 浓度波动 > 10% 时反应易中断, 甲烷转化率仅60%-75%。从投资回报角度来看,低浓度瓦斯利用项目初始 投资显著高于常规能源项目。分布式发电项目单位投资 4000-6000元/kW,是燃煤发电的1.5-2倍。

低浓度瓦斯核心利用技术路径

内燃机发电是通过"瓦斯与空气混合-缸内燃烧做 功-驱动发电机发电"的技术路径,核心设备为燃气内燃 机,其工作过程分为吸气、压缩、燃烧、排气四个冲程。该 技术的优势在于成熟度高、启停灵活、适应中小规模气 源;不足在于浓度适配下限高、低负荷效率低,且缸体易 受硫化氢腐蚀,需每5000小时更换一次缸套,维护成本 较高。

无焰氧化蓄热技术是通过"低温无焰燃烧+蓄热体换 热"实现低浓度瓦斯能量利用的技术。将低浓度瓦斯与 空气按特定比例混合后,通入填充蓄热体的反应器,利用 蓄热体储存的热量将混合气加热至600℃—900℃,触发 甲烷无焰氧化反应,反应产生的高温烟气通过蓄热体放 热,将蓄热体温度提升至反应温度,实现热量循环利用。 该技术的核心优势在于安全性能优异,无焰氧化状态下, 反应区域无明火,即使瓦斯浓度波动至爆炸极限,也不会 引发爆炸;同时适配浓度范围宽,可直接处理未经提浓的 低浓度瓦斯,省去提浓环节成本。

低浓度瓦斯利用核心技术挑战

对于内燃机发电技术来说,浓度适配性与稳定性矛 盾突出。当前国产燃气内燃机的稳定运行甲烷浓度下限 为8%,但煤矿低浓度瓦斯浓度常因开采工况变化降至 5%—8%,此时需通过掺入高浓度瓦斯或天然气调节浓 度,导致额外成本增加。同时,瓦斯浓度的短时波动会导 致内燃机燃烧不稳定,出现"爆震"现象,迫使机组降负荷

氢与水蒸气,会对内燃机缸体、活塞环等核心部件造成严 重腐蚀,瓦斯中的粉尘也会加剧活塞环与缸套的磨损,导 致气密性下降,发电效率进一步降低。

而无焰氧化蓄热技术反应效率与产物调控难度大, 低浓度瓦斯的低甲烷分压导致无焰氧化反应速率缓慢, 常规反应器的甲烷转化率仅60%—75%,未转化的甲烷 随尾气排空,既浪费资源,又影响碳减排效果。若通过提 高反应温度(>900℃)提升转化率,易导致蓄热体热疲劳 开裂,使用寿命从3年缩短至1一1.5年。

此外,以上两种技术还存在一些共性的技术挑战:

一是预处理技术效率低、成本高。在除尘环节,袋式 除尘器在煤矿高粉尘工况下,滤袋易受瓦斯中水汽与酸 性物质腐蚀,使用寿命仅6-12个月;湿法除尘虽效率达 95%,但每处理1000m3瓦斯产生0.5—1m3含尘废水,后 续需建设沉淀池与过滤系统,投资增加30%-40%,且存 在二次污染风险。在脱水环节,分子筛脱水再生能耗占 系统总能耗的15%—20%。

二是系统集成与安全管控协同不足。煤矿低浓度瓦 斯抽采系统具有"分散性"与"间歇性"特点,而内燃机发 电、无焰氧化蓄热等利用系统需连续稳定的气源,两者难

三是安全管控方面,现有监测系统多针对"浓度、压 力"等常规参数,缺乏对设备隐性故障的预判能力。例 如,内燃机缸体腐蚀、无焰氧化反应器蓄热体开裂等问 题,难以通过常规监测发现,往往在设备失效后才察觉, 导致非计划停机时间增加。

总结与展望

煤矿低浓度瓦斯兼具"安全隐患"与"清洁能源"双重 属性,但受限于爆炸风险高、能量密度低、杂质含量高等 特性,其利用面临安全、技术、经济三重制约。内燃机发 电技术成熟度高,可实现"电一热"联供,但浓度适配下限 高、设备腐蚀严重;无焰氧化蓄热技术安全性能优异,省 去提浓成本,但其能量利用率低、产物调控难度大,目前 仍处于示范阶段。两大核心技术均面临预处理效率低、 核心组件寿命不足、浓度适配性差等问题;同时,瓦斯抽 采系统的"分散性"与利用系统的"连续性"矛盾,进一步 加剧了规模化应用难度。未来需聚焦材料与工艺优化实 现技术革新,构建"集输一预处理一利用"一体化体系,推 动该领域向高效、绿色、可持续方向发展。

参考文献:

[1]李明,王强,张华等。低浓度瓦斯内燃机发电系统 稳定性提升策略研究 []]. 煤炭学报, 2024, 49 (5):

[2]赵阳,孙宇,刘畅。煤矿低浓度瓦斯预处理技术的 优化与应用 [J]. 矿业安全与环保,2022, 49 (3): 87-92.

(作者单位:龙源(北京)碳资产管理技术有限公司,