石家庄学院突破无人机"速度"与"智能"技术壁垒

开辟低空经济产业新赛道

在低空经济快速崛起的当下,无人机已不再只是航拍爱好者的"玩物",而逐渐成为推动产业升级、服 务社会发展乃至保障国家安全的重要力量。近日,由石家庄学院与重庆灵玉科技联合研发的超高速无人 机取得了重大突破:经过短短数月的持续攻关,研发团队成功将无人机的最高飞行速度从最初的180公 里/小时,提升至在500克负载下仍可保持486公里/小时的超高速。这一成果不仅打破了传统无人机的 速度天花板,更为低空经济产业开辟了新的赛道,展示了国产无人机在高速化领域的自主创新实力。

超高速无人机:打破传统无人机速度天花板

近年来,我国无人机产业 发展迅猛,消费级产品长期占 据全球市场的主导地位,工业 级应用也在农业植保、能源巡 检、安防监控等领域广泛铺 开。然而,高速无人机的研发 和应用仍是行业的短板。

传统无人机在速度与稳定 性之间难以兼顾,多数产品飞 行速度在100-200公里/小时 区间,主要适配常规航拍或作 业场景。随着市场需求的提 升,尤其是在影视航拍中对高 速跟车拍摄、应急救援中对快 速抵达的要求、以及其他需要 超高速响应的特殊任务中,对 高速无人机的需求日益迫切。 正因如此,石家庄学院与重庆 灵玉科技决定联手,立项研发 这一项目,从源头攻克无人机 高速化的技术瓶颈。

2024年7月初,超高速无 人机研发项目正式启动。研发 团队由石家庄学院科研人员与 企业工程师联合组成,涵盖了 气动学、结构设计、电装集成和 飞行控制等多个领域的专家。 项目目标通过"原型验证一改 进设计一性能迭代"的方式逐 步实现速度突破。

第一次迭代:调整机身外 形,降低空气阻力。

第二次迭代:采用新型轻 量化材料,在保持强度的同时 减轻机体重量

第四次迭代: 改进电池组 管理系统,实现高功率输出的 稳定供应

第五次迭代:对飞控系统 进行调参,提升高速状态下的 姿态稳定性。

第六次迭代:在实飞测试 中强化机臂与桨叶结构,解决 高负载下的抖动问题。

第七次迭代:综合前六次 成果,最终实现500克负载下 保持486公里/小时高速巡航

企业在工程落地与测试验 证上积累的经验,与该校在气 动理论和控制算法上的研究成 果形成互补,为项目的快速推 进提供了坚实保障。

超高速无人机的出现,为 低空经济的多元化发展提供 了全新可能。

影视航拍:能够完成 以往无人机无法实现的超 高速跟车、跟船镜头,为电 影与体育赛事转播带来革 命性效果。

应急救援:在地震、洪 水等灾害发生时,超高速 无人机可在最短时间内抵 达现场,传回高清画面并 进行物资投送。

物流快递:未来在特 定场景下,高速无人机有 望承扫高价值 物品的快速

蜂群无人机:智能化协同的新方向

未来的空域竞争不仅在 于单机速度的极限,更在于群 体智能的比拼。石家庄学院 研发团队与重庆灵玉科技在 超高速无人机的探索之外,率 先布局 AI+无人机蜂群协同 技术,并在仿真和实测中取得 了突破性进展。蜂群无人机 系统采用去中心化自组网模 式,每一架无人机都携带算 力,通过互联形成分布式的数 据处理与共享网络,从而实现 动态环境下的高效协同。

该模型融合了强化学习与 进化计算,能够在复杂环境中 快速优化蜂群的任务分配与协 同策略。在模拟实验中,即使 蜂群规模扩展至50架无人机, 仍能保持高效的信息共享和稳 定的队形控制,展现出类似生 物群体的智能适应性。

在具体设计上,蜂群 无人机根据分工被划分为

"工蜂":负责探路和 实时地图绘制;

"锐瞳":承担空中凝 视与目标跟踪;

"快蜂":专门用于负 重携带与目标投放。

这种分工协作不仅提升 了蜂群的整体作战效能,也让 单机失效不再影响系统的整 体运行。AI算法驱动的分布 式决策,使蜂群能够在灾害救 援、群体侦察、协同打击和通 信中继等场景中展现出极高 的灵活性与鲁棒性。

蜂群无人机与超高速无 人机在研发思路上相辅相成: 前者以智能化协同为核心,强 调群体智慧;后者以速度极限 突破为亮点,追求单机性能的 极致。二者的结合,正逐步构 建出未来低空智能化无人机 系统的雏形,为我国在空域竞 争中开辟新的优势。

从突破速度极限的单机 试验,到探索蜂群协同的智能 化方向,石家庄学院与重庆灵 玉科技的联合研发展现了国 产无人机在材料、气动、动力 和算法等多领域的创新成 果。高速无人机验证了我国 在飞行性能上的潜力,而蜂群 无人机则开启了群体智能的 新局面。两条技术路径相辅 相成,共同勾勒出未来低空智 能化无人机系统的雏形。

(宋字斐)

